Vector Bundles and Brill–Noether Theory

نویسنده

  • SHIGERU MUKAI
چکیده

After a quick review of the Picard variety and Brill–Noether theory, we generalize them to holomorphic rank-two vector bundles of canonical determinant over a compact Riemann surface. We propose several problems of Brill–Noether type for such bundles and announce some of our results concerning the Brill–Noether loci and Fano threefolds. For example, the locus of rank-two bundles of canonical determinant with five linearly independent global sections on a non-tetragonal curve of genus 7 is a smooth Fano threefold of genus 7. As a natural generalization of line bundles, vector bundles have two important roles in algebraic geometry. One is the moduli space. The moduli of vector bundles gives connections among different types of varieties, and sometimes yields new varieties that are difficult to describe by other means. The other is the linear system. In the same way as the classical construction of a map to a projective space, a vector bundle gives rise to a rational map to a Grassmannian if it is generically generated by its global sections. In this article, we shall describe some results for which vector bundles play such roles. They are obtained from an attempt to generalize Brill–Noether theory of special divisors, reviewed in Section 2, to vector bundles. Our main subject is rank-two vector bundles with canonical determinant on a curve C with as many global sections as possible: especially their moduli and the Grassmannian embeddings of C by them (Section 4). 1. Line bundles Let X be a smooth algebraic variety over the complex number field C. We consider the set of isomorphism classes of line bundles, or invertible sheaves, on X . This set enjoys two good properties, neither of which holds anymore Based on the author’s three talks given at JAMI in 1991, UCLA in 1992 and Durham University in 1993. Supported in part by a Grant under The Monbusho International Science Research Program: 04044081.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of Line Bundles and Brill–noether Loci of Rank-two Vector Bundles on a General Curve

In this paper we study Brill-Noether loci for rank-two vector bundles and describe the general member of some components as suitable extensions of line bundles.

متن کامل

1 Semipositive Bundles and Brill - Noether Theory

We prove a Lefschetz hyperplane theorem for the determinantal loci of a morphism between two holomorphic vector bundles E and F over a complex manifold under the condition that E∗ ⊗ F is Griffiths k-positive. We apply this result to find some homotopy groups of the Brill-Noether loci for a generic curve.

متن کامل

Brill-Noether theory on singular curves and vector bundles on K3 surfaces

Let C be a smooth curve. Let W r d be the Brill-Noether locus of line bundles of degree d and with r + 1 independent sections. W r d has a expected dimension ρ(r, d) = g − (r + 1)(g − d + r). If ρ(r, d) > 0 then Fulton and Lazarsfeld have proved that W r d is connected. We prove that this is still true if C is a singular irreducible curve lying on a regular surface S with −KS generated by globa...

متن کامل

Brill–noether Loci of Stable Rank–two Vector Bundles on a General Curve

In this note we give an easy proof of the existence of generically smooth components of the expected dimension of certain Brill–Noether loci of stable rank 2 vector bundles on a curve with general moduli, with related applications to Hilbert scheme of scrolls.

متن کامل

The Maximal Rank Conjecture and Rank Two Brill-Noether Theory

We describe applications of Koszul cohomology to the BrillNoether theory of rank 2 vector bundles. Among other things, we show that in every genus g > 10, there exist curves invalidating Mercat’s Conjecture for rank 2 bundles. On the other hand, we prove that Mercat’s Conjecture holds for general curves of bounded genus, and its failure locus is a Koszul divisor in the moduli space of curves. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994